3.620 \(\int \frac{1}{(d+e x)^4 (a+b (d+e x)^2+c (d+e x)^4)} \, dx\)

Optimal. Leaf size=224 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 e \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 e \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 e (d+e x)}-\frac{1}{3 a e (d+e x)^3} \]

[Out]

-1/(3*a*e*(d + e*x)^3) + b/(a^2*e*(d + e*x)) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*
Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b - (
b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*
Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

________________________________________________________________________________________

Rubi [A]  time = 0.496765, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {1142, 1123, 1281, 1166, 205} \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 e \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 e \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 e (d+e x)}-\frac{1}{3 a e (d+e x)^3} \]

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

-1/(3*a*e*(d + e*x)^3) + b/(a^2*e*(d + e*x)) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*
Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*e) + (Sqrt[c]*(b - (
b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*
Sqrt[b + Sqrt[b^2 - 4*a*c]]*e)

Rule 1142

Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m),
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]

Rule 1123

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*x^2 +
 c*x^4)^(p + 1))/(a*d*(m + 1)), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
 e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(d+e x)^4 \left (a+b (d+e x)^2+c (d+e x)^4\right )} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x^4 \left (a+b x^2+c x^4\right )} \, dx,x,d+e x\right )}{e}\\ &=-\frac{1}{3 a e (d+e x)^3}+\frac{\operatorname{Subst}\left (\int \frac{-3 b-3 c x^2}{x^2 \left (a+b x^2+c x^4\right )} \, dx,x,d+e x\right )}{3 a e}\\ &=-\frac{1}{3 a e (d+e x)^3}+\frac{b}{a^2 e (d+e x)}-\frac{\operatorname{Subst}\left (\int \frac{-3 \left (b^2-a c\right )-3 b c x^2}{a+b x^2+c x^4} \, dx,x,d+e x\right )}{3 a^2 e}\\ &=-\frac{1}{3 a e (d+e x)^3}+\frac{b}{a^2 e (d+e x)}+\frac{\left (c \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{2 a^2 e}+\frac{\left (c \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,d+e x\right )}{2 a^2 e}\\ &=-\frac{1}{3 a e (d+e x)^3}+\frac{b}{a^2 e (d+e x)}+\frac{\sqrt{c} \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}} e}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b+\sqrt{b^2-4 a c}} e}\\ \end{align*}

Mathematica [A]  time = 0.216544, size = 235, normalized size = 1.05 \[ \frac{\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} (d+e x)}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{2 a}{(d+e x)^3}+\frac{6 b}{d+e x}}{6 a^2 e} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)^4*(a + b*(d + e*x)^2 + c*(d + e*x)^4)),x]

[Out]

((-2*a)/(d + e*x)^3 + (6*b)/(d + e*x) + (3*Sqrt[2]*Sqrt[c]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]
*Sqrt[c]*(d + e*x))/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]
*Sqrt[c]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*(d + e*x))/Sqrt[b + Sqrt[b^2 - 4*a*c]]])
/(Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]]))/(6*a^2*e)

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 188, normalized size = 0.8 \begin{align*} -{\frac{1}{3\,ae \left ( ex+d \right ) ^{3}}}+{\frac{b}{{a}^{2}e \left ( ex+d \right ) }}+{\frac{1}{2\,{a}^{2}e}\sum _{{\it \_R}={\it RootOf} \left ( c{e}^{4}{{\it \_Z}}^{4}+4\,cd{e}^{3}{{\it \_Z}}^{3}+ \left ( 6\,c{d}^{2}{e}^{2}+b{e}^{2} \right ){{\it \_Z}}^{2}+ \left ( 4\,c{d}^{3}e+2\,bde \right ){\it \_Z}+c{d}^{4}+b{d}^{2}+a \right ) }{\frac{ \left ({{\it \_R}}^{2}bc{e}^{2}+2\,{\it \_R}\,bcde+c{d}^{2}b-ac+{b}^{2} \right ) \ln \left ( x-{\it \_R} \right ) }{2\,c{e}^{3}{{\it \_R}}^{3}+6\,cd{e}^{2}{{\it \_R}}^{2}+6\,c{d}^{2}e{\it \_R}+2\,c{d}^{3}+be{\it \_R}+bd}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x)

[Out]

-1/3/a/e/(e*x+d)^3+b/a^2/e/(e*x+d)+1/2/a^2/e*sum((_R^2*b*c*e^2+2*_R*b*c*d*e+b*c*d^2-a*c+b^2)/(2*_R^3*c*e^3+6*_
R^2*c*d*e^2+6*_R*c*d^2*e+2*c*d^3+_R*b*e+b*d)*ln(x-_R),_R=RootOf(c*e^4*_Z^4+4*c*d*e^3*_Z^3+(6*c*d^2*e^2+b*e^2)*
_Z^2+(4*c*d^3*e+2*b*d*e)*_Z+c*d^4+b*d^2+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 2.17542, size = 4215, normalized size = 18.82 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="fricas")

[Out]

1/6*(6*b*e^2*x^2 + 12*b*d*e*x + 6*b*d^2 + 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d
^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 -
6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4
 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^
3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) - (b^8 - 8*a*
b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^
6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5
*b^2 - 4*a^6*c)*e^2))) - 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5
- 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a
^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x +
 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a
*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) - (b^8 - 8*a*b^6*c + 20*a^2*b^
4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^
8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e
^2))) - 3*sqrt(1/2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a
^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^
2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a
*b^2*c^4 + a^2*c^5)*d + sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b
^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^
2*c^3 + 4*a^4*c^4)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 1
1*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))) + 3*sqrt(1/
2)*(a^2*e^4*x^3 + 3*a^2*d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b
^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4
)))/((a^5*b^2 - 4*a^6*c)*e^2))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*e*x + 2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^
5)*d - sqrt(1/2)*((a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*e^3*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^
2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)) + (b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4
)*e)*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*e^2*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6
*a^3*b^2*c^3 + a^4*c^4)/((a^10*b^2 - 4*a^11*c)*e^4)))/((a^5*b^2 - 4*a^6*c)*e^2))) - 2*a)/(a^2*e^4*x^3 + 3*a^2*
d*e^3*x^2 + 3*a^2*d^2*e^2*x + a^2*d^3*e)

________________________________________________________________________________________

Sympy [A]  time = 12.0593, size = 347, normalized size = 1.55 \begin{align*} \frac{- a + 3 b d^{2} + 6 b d e x + 3 b e^{2} x^{2}}{3 a^{2} d^{3} e + 9 a^{2} d^{2} e^{2} x + 9 a^{2} d e^{3} x^{2} + 3 a^{2} e^{4} x^{3}} + \operatorname{RootSum}{\left (t^{4} \left (256 a^{7} c^{2} e^{4} - 128 a^{6} b^{2} c e^{4} + 16 a^{5} b^{4} e^{4}\right ) + t^{2} \left (- 80 a^{3} b c^{3} e^{2} + 100 a^{2} b^{3} c^{2} e^{2} - 36 a b^{5} c e^{2} + 4 b^{7} e^{2}\right ) + c^{5}, \left ( t \mapsto t \log{\left (x + \frac{- 96 t^{3} a^{7} b c^{2} e^{3} + 56 t^{3} a^{6} b^{3} c e^{3} - 8 t^{3} a^{5} b^{5} e^{3} - 4 t a^{4} c^{4} e + 32 t a^{3} b^{2} c^{3} e - 40 t a^{2} b^{4} c^{2} e + 16 t a b^{6} c e - 2 t b^{8} e + a^{2} c^{5} d - 3 a b^{2} c^{4} d + b^{4} c^{3} d}{a^{2} c^{5} e - 3 a b^{2} c^{4} e + b^{4} c^{3} e} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**4/(a+b*(e*x+d)**2+c*(e*x+d)**4),x)

[Out]

(-a + 3*b*d**2 + 6*b*d*e*x + 3*b*e**2*x**2)/(3*a**2*d**3*e + 9*a**2*d**2*e**2*x + 9*a**2*d*e**3*x**2 + 3*a**2*
e**4*x**3) + RootSum(_t**4*(256*a**7*c**2*e**4 - 128*a**6*b**2*c*e**4 + 16*a**5*b**4*e**4) + _t**2*(-80*a**3*b
*c**3*e**2 + 100*a**2*b**3*c**2*e**2 - 36*a*b**5*c*e**2 + 4*b**7*e**2) + c**5, Lambda(_t, _t*log(x + (-96*_t**
3*a**7*b*c**2*e**3 + 56*_t**3*a**6*b**3*c*e**3 - 8*_t**3*a**5*b**5*e**3 - 4*_t*a**4*c**4*e + 32*_t*a**3*b**2*c
**3*e - 40*_t*a**2*b**4*c**2*e + 16*_t*a*b**6*c*e - 2*_t*b**8*e + a**2*c**5*d - 3*a*b**2*c**4*d + b**4*c**3*d)
/(a**2*c**5*e - 3*a*b**2*c**4*e + b**4*c**3*e))))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left ({\left (e x + d\right )}^{4} c +{\left (e x + d\right )}^{2} b + a\right )}{\left (e x + d\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^4/(a+b*(e*x+d)^2+c*(e*x+d)^4),x, algorithm="giac")

[Out]

integrate(1/(((e*x + d)^4*c + (e*x + d)^2*b + a)*(e*x + d)^4), x)